90 research outputs found

    Analyzing temporal role based access control models

    No full text
    Today, Role Based Access Control (RBAC) is the de facto model used for advanced access control, and is widely deployed in diverse enterprises of all sizes. Several extensions to the authorization as well as the administrative models for RBAC have been adopted in recent years. In this paper, we consider the temporal extension of RBAC (TRBAC), and develop safety analysis techniques for it. Safety analysis is essential for understanding the implications of security policies both at the stage of specification and modification. Towards this end, in this paper, we first define an administrative model for TRBAC. Our strategy for performing safety analysis is to appropriately decompose the TRBAC analysis problem into multiple subproblems similar to RBAC. Along with making the analysis simpler, this enables us to leverage and adapt existing analysis techniques developed for traditional RBAC. We have adapted and experimented with employing two state of the art analysis approaches developed for RBAC as well as tools developed for software testing. Our results show that our approach is both feasible and flexible

    Role Mining in the Presence of Noise

    Get PDF
    Abstract. The problem of role mining, a bottom-up process of discovering roles from the user-permission assignments (UPA), has drawn increasing attention in recent years. The role mining problem (RMP) and several of its variants have been proposed in the literature. While the basic RMP discovers roles that exactly represent the UPA, the inexact variants, such as the Ī“-approx RMP and MinNoise-RMP, allow for some inexactness in the sense that the discovered roles do not have to exactly cover the entire UPA. However, since data in real life is never completely clean, the role mining process is only effective if it is robust to noise. This paper takes the first step towards addressing this issue. Our goal in this paper is to examine if the effect of noise in the UPA could be ameliorated due to the inexactness in the role mining process, thus having little negative impact on the discovered roles. Specifically, we define a formal model of noise and experimentally evaluate the previously proposed algorithm for Ī“-approx RMP against its robustness to noise. Essentially, this would allow one to come up with strategies to minimize the effect of noise while discovering roles. Our experiments on real data indicate that the role mining process can preferentially cover a lot of the real assignments and leave potentially noisy assignments for further examination. We explore the ramifications of noisy data and discuss next steps towards coming up with more effective algorithms for handling such data

    Security analysis for temporal role based access control

    No full text
    Providing restrictive and secure access to resources is a challenging and socially important problem. Among the many formal security models, Role Based Access Control (RBAC) has become the norm in many of today's organizations for enforcing security. For every model, it is necessary to analyze and prove that the corresponding system is secure. Such analysis helps understand the implications of security policies and helps organizations gain confidence on the control they have on resources while providing access, and devise and maintain policies.In this paper, we consider security analysis for the Temporal RBAC (TRBAC), one of the extensions of RBAC. The TRBAC considered in this paper allows temporal restrictions on roles themselves, user-permission assignments (UA), permission-role assignments (PA), as well as role hierarchies (RH). Towards this end, we first propose a suitable administrative model that governs changes to temporal policies. Then we propose our security analysis strategy, that essentially decomposes the temporal security analysis problem into smaller and more manageable RBAC security analysis sub-problems for which the existing RBAC security analysis tools can be employed. We then evaluate them from a practical perspective by evaluating their performance using simulated data sets

    Blockchain based auditable access control for distributed business processes

    Get PDF
    The use of blockchain technology has been proposed to provide auditable access control for individual resources. However, when all resources are owned by a single organization, such expensive solutions may not be needed. In this work we focus on distributed applications such as business processes and distributed workflows. These applications are often composed of multiple resources/services that are subject to the security and access control policies of different organizational domains. Here, blockchains can provide an attractive decentralized solution to provide auditability. However, the underlying access control policies may be overlapping in terms of the component conditions/rules, and simply using existing solutions would result in repeated evaluation of userā€™s authorization separately for each resource, leading to significant overhead in terms of cost and computation time over the blockchain. To address this challenge, we propose an approach that formulates a constraint optimization problem to generate an optimal composite access control policy. This policy is in compliance with all the local access control policies and minimizes the policy evaluation cost over the blockchain. The developed smart contract(s) can then be deployed to the blockchain, and used for access control enforcement. We also discuss how the access control enforcement can be audited using a game-theoretic approach to minimize cost. We have implemented the initial prototype of our approach using Ethereum as the underlying blockchain and experimentally validated the effectiveness and efficiency of our approach
    • ā€¦
    corecore